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Abstract. Equations illustrating the application of dipole sum rules by relating the reaction strengths from
single-particle transfer (stripping as well as pick up reactions) to the magnetic dipole moment of the target
state (derived earlier) have been rewritten in a more symmetrical and user friendly form. The purpose of
the present work is not to calculate the magnetic moment but to provide six different ways —from stripping
and pick up reactions as well as from their combination, to study the discrepancies in the measurement of
reaction strengths through their relationships with the magnetic moment.

PACS. 25.40.-h Nucleon induced reactions – 21.30.-x Nuclear forces – 11.55.Hx Sum rules

1 Introduction

Multipole sum rule methods, within the framework of shell
model, were designed to provide useful information about
nuclear structure without resorting to large-scale spectro-
scopic calculations. A large number of applications of the
monopole sum rules (non-energy-weighted as well as linear
energy-weighted) have been reported [1–11] but higher-
order sum rules have been applied sparingly [12–14].

The present article focuses itself on the relation-
ships [13] (obtained through the use of dipole sum rules)
between single-particle transfer strengths and a measur-
able physical quantity, that is, the magnetic dipole mo-
ment of the target state. The purpose is not to calculate
the magnetic moments, but to check the discrepancies in
measured strengths through these relationships.

The present work is an advancement of our previous
work [13,14] where only stripping reactions were utilized
to exploit such mutual relationships. Now the pick up re-
actions as well as the combination of stripping and pick up
reactions have also been used, which provides six options,
in all, to test the quality of measured strengths towards
building up the known magnetic moments. It should be
emphasized that the dipole sum rule has the advantage
of being sensitive to the distribution of strengths among
various J-states of the final nucleus whereas the monopole
sum rule showed sensitivity only to the total strength for
all J-states. The lack of agreement between the measured
magnetic moment (known so precisely), and our extracted
values is a reflection, in part, on the discrepancies in the
measured stripping/pick up reaction strengths.
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This work is also an improvement on our previous con-
tribution [13] in another sense. The relationships between
magnetic moment of the target state and single-particle
transfer reaction strengths have now been presented in
a more elegant form which makes it more convenient to
handle them.

2 Algebraic apparatus

The equations, relating the target state magnetic moment
to the spectroscopic factors of the states of residual nuclei,
obtained via single-particle transfer reactions on the given
target, were derived in one of our earlier works [13]. How-
ever, to make this article reasonably self-contained, we are
giving below the necessary background and the steps in-
volved in the derivation of these equations. Various terms
in the equations are also being recast to make them look
more symmetrical.

2.1 Notation

We denote the target state involved in a typical transfer
reaction by | nΓ0x0〉, the particle transfer orbit by ρ and
the final state of the residual nucleus by | n ± 1, Γx〉.
Following French [2], the Greek letters here represent
both the spin (angular momentum) and isospin, so that
Γ0 ≡ J0T0; ρ ≡ j1/2 and Γ ≡ JT . The label n gives
the number of active nucleons in the target state, while
x0 and x stand for all the non–angular-momentum quan-
tum numbers required to uniquely define the target state
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and the final state, respectively. Any algebraic factors in-
volving Greek letters in the expressions or equations oc-
curing in the text would actually represent a product
of two factors (one involving spin and the other involv-
ing isospin). Thus, (−1)Γ = (−1)J+T ; U(Γ0ρΓ0ρ;ΓΛ) =
U(J0jJ0j;Jk)U(T01/2T01/2;Tt) etc.
We also use the notation,

[Γ ] ≡ [J ][T ] = (2J + 1)(2T + 1) etc.

Angular momentum coupling will be represented by a
“×”, e.g., (Aρ × Bρ)Λ represents the coupling of an op-
erator Aρ (rank ρ) with an operator Bρ (rank ρ) to form
an operator of rank Λ by the usual angular momentum
coupling rules.

2.2 Cartesian operators and unit tensors

In order to look after the angular momentum and anti-
symmetry requirements, we prefer to work in the second
quantized tensorial formalism developed by French [2]. In
this formalism, the nucleon creation and destruction op-
erators for the shell model orbit ρ are represented by Aρ

and Bρ, respectively. The second quantized representation
of the symmetrical single-particle unit tensor (introduced
initially by Racah) in terms of the fundamental creation
and destruction operators is given by [2]

UΛ
ρρ′ ≡ [Λ]−1/2(Aρ × Bρ′

)Λ , (1)

such that, for a properly normalised one particle state | ρ〉,
we have

〈ρ || UΛ
ρρ′ || ρ′〉 = 1 . (2)

Making use of the fact that the m-dependence of the ma-
trix elements of any two tensor operators of the same rank
is the same, we can write for any symmetrical one-body
operator, OΛ, which is diagonal in the quantum numbers
ρ (the operators j and t with which we deal in this work
are such operators),

〈ρ | OΛ | ρ〉 = C〈ρ | UΛ
ρρ | ρ〉 . (3)

The constant of proportionality, C, being independent of
m, is just the ratio of the reduced matrix elements of the
two tensors. Therefore, we can write the part of the oper-
ator OΛ corresponding to orbit ρ in terms of the UΛ’s as
follows:

OΛ(ρ) = 〈ρ || OΛ || ρ〉UΛ
ρρ . (4)

It is well known that the reduced matrix element of the
angular momentum operator j (a vector operator or a ten-
sor of rank 1 in J-space) between single-particle states is
given by

〈j || j || j〉 =
√

j(j + 1)(2j + 1) =
√

j(j + 1)[j] . (5)

Noting that j is a scalar in the isospin space, we can extend
this result to the JT -space and write

〈ρ || j || ρ〉 =
√

j(j + 1)[ρ] . (6)

Hence the expression for j(ρ) in terms of the unit tensors,
becomes

j(ρ) =
√

j(j + 1)[ρ] U10
ρρ . (7)

Proceeding on similar lines, we shall obtain

jt(ρ) =
√

j(j + 1)(1/2)(3/2)[ρ] U11
ρρ

=
√

3
2

√
j(j + 1)[ρ] U11

ρρ , (8)

where t is the isospin operator (rank 1 in isospin space)
and we have made use of the fact that the isospin of a
single-nucleon state is 1/2.

2.3 Magnetic moment operator

It is customary to define gj , a g-factor for a particle in
a state with a definite value of j, such that the magnetic
moment of the particle in that state is given by

µ = gjj . (9)

We also have the well-known results that

gj = gl − gl−gs

2j for j = l + 1/2 ,

= gl + gl−gs

2(j+1) for j = l − 1/2 . (10)

It is easy to verify that the following single expression
encompasses both of these results:

gj = gl − (−1)l+1/2−j

2l + 1
(gl − gs) . (11)

Noting that the orbital gyromagnetic ratios for a proton
and a neutron are 1µ0 and 0, respectively, and writing gpµ0

and gnµ0 for their respective spin gyromagnetic ratios, we
have for a proton and a neutron, respectively, in the orbit
ρ(lj),

gj(p)
µ0

= 1− (1 − gp)
(−1)l+1/2−j

2l + 1
,

gj(n)
µ0

= gn
(−1)l+1/2−j

2l + 1
, (12)

where µ0 stands for the nuclear magneton.
We prefer to work in the JT -space where proton and neu-
tron are just two forms of a nucleon, with isospin projec-
tion tz = −1/2 and +1/2, respectively. Thus we may write
for a nucleon in the orbit ρ,

gj

µ0
= (1/2 − tz)

[
1 − (1 − gp)

(−1)l+1/2−j

2l + 1

]

+(1/2 + tz)gn
(−1)l+1/2−j

2l + 1
, (13)
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which after a little rearrangement becomes

gj

µ0
=

1
2

[
1 + (gn + gp − 1)

(−1)l+1/2−j

2l + 1

]

−
[
1− (gn − gp + 1)

(−1)l+1/2−j

2l + 1

]
tz . (14)

The magnetic moment of a nucleon in the orbit ρ is then
given by

µ

µ0
=

gjj

µ0
=

1
2

[
1 + (gn + gp − 1)

(−1)l+1/2−j

2l + 1

]
j

−
[
1− (gn − gp + 1)

(−1)l+1/2−j

2l + 1

]
jtz . (15)

By definition, the magnetic moment of a state is the
expectation value of (µop)z in that state with the maxi-
mum projection in J-space, that is, m = j. Therefore, we
may write

µop(ρ)
µ0

=
1
2

[
1 + (gn + gp − 1)

(−1)l+1/2−j

2l + 1

]
j(ρ)

−
[
1 − (gn − gp + 1)

(−1)l+1/2−j

2l + 1

]
jt(ρ) . (16)

Making use of the expressions for the operators, j and jt
from eqs. (7) and (8) and in view of the fact that each
active nucleon contributes towards the nuclear magnetic
moment, the magnetic moment operator for a nucleus, as
far as its diagonal matrix elements are concerned, may be
written as

µop

µ0
=

1
2

∑
ρ

{
1 + (gn + gp − 1)

(−1)l+1/2−j

2l + 1

}

× {j(j + 1)[ρ]}1/2U10
ρρ

−
√

3
2

∑
ρ

{
1 − (gn − gp + 1)

(−1)l+1/2−j

2l + 1

}

× {j(j + 1)[ρ]}1/2U11
ρρ , (17)

where the summation runs over all the active orbits.

2.4 Magnetic moment and spectroscopic factors

With the form of the magnetic moment operator given
in the previous subsection, what we need now, to evaluate
the magnetic moment of a state, are essentially the matrix
elements of the operators U10 and U11 in that state. The
multipole sum rules for single-particle transfer reactions
give us the expressions for these matrix elements (in the
target state) in terms of the spectroscopic factors of the
states of the final nucleus. The basic sum rule equations
for single-particle stripping and pick up cases, respectively,
are [2]

〈nΓ0x0 || UΛ
ρρ || nΓ0x0〉 = [Γ0ρ]1/2δΛ0

−[Λ]−1/2
∑
Γ

(−1)Γ0+ρ−Γ [Γ ]1/2U(Γ0ρΓ0ρ;ΓΛ)S+
Γ , (18)

〈nΓ0x0 || UΛ
ρρ || nΓ0x0〉 = (−1)Λ[Λ]−1/2

×
∑
Γ

(−1)Γ0+ρ−Γ [Γ0]
[Γ ]1/2

U(Γ0ρΓ0ρ;ΓΛ)S−
Γ , (19)

where S+
Γ ≡ ∑

x S+
Γx(nΓ0x0 + ρ → n + 1, Γx) and S−

Γ ≡∑
x S−

Γx(nΓ0x0 −ρ → n− 1, Γx) are the summed spectro-
scopic factors for all states of the final nucleus having a
particular value of Γ in the case of stripping (superscript
‘+’) and pick up (superscript ‘−’) reactions, respectively.
The summations on the right-hand sides of these equations
run over all possible values of J and T (Γ ≡ JT ) and for a
given target isospin T0, there are only two possible values
of the final state isospin T , these being T< ≡ (T0 − 1/2)
and T> ≡ (T0 + 1/2).

In certain experimental situations, states belonging to
both these isospins may not be observed in a single re-
action. In that case, the sum rule equations can be in-
verted with regard to the isospin variables [12]. Mak-
ing use of the analytical values of the Racah coefficients
U(T01/2T01/2;T0) and U(T01/2T01/2;T1), now occuring
on the left hand side, we can obtain matrix elements of
the linear combinations of the isoscalar and isovector unit
tensors, as

〈nJ0T0x0 || Uk0
ρρ +

√
3 α(T0, T

+)Uk1
ρρ || nJ0T0x0〉 =

[ρΓ0]1/2δk0 −
√

2
[T0]1/2

[k]1/2

×
∑

J

(−1)J0+j−J [J ]1/2U(J0jJ0j;Jk)S+
JT (20)

and

〈nJ0T0x0 || Uk0
ρρ −

√
3 α(T0, T

−)Uk1
ρρ || nJ0T0x0〉 =

√
2(−1)k

[Γ0]
[T−]

[T0]1/2

[k]1/2

×
∑

J

(−1)J0+j−J [J ]−1/2U(J0jJ0j;Jk)S−
JT , (21)

where

α(T0, T ) = − (T0+1)√
T0(T0+1)

for T = T< ,

= T0√
T0(T0+1)

for T = T> . (22)

Equations (20) and (21) can be solved to get 〈|| Uk0
ρρ ||〉

and 〈|| Uk1
ρρ ||〉 in terms of a combination of spectroscopic

factors for stripping and pick up reactions performed on
the same target state | nΓ0x0〉. The sum rule equations
(18), (19), (20) and (21) may be combined with the ex-
pression for magnetic moment operator (17) to give us the
relationships between magnetic moment of a target state
and the spectroscopic factors for transfer reactions involv-
ing i) pick up of a particle alone, ii) stripping alone and iii)
a combination of pick up and stripping. The relationships
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obtained by this procedure are

µ

µ0
= − 1

4(J0 + 1)(T0 + 1)

∑
ρJ

F (ρ, J)

×
[
{(T0 + 1)X1(ρ) + T0X2(ρ)}S−

JT>

+(T0 + 1){X1(ρ) − X2(ρ)}S−
JT<

]
, (23)

µ

µ0
= − 1

2(J0 + 1)(2T0 + 1)

∑
ρJ

F (ρ, J)
(

2J + 1
2J0 + 1

)

×
[
{(T0 + 1)X1(ρ) − T0X2(ρ)}S+

JT>

+T0{X1(ρ) + X2(ρ)}S+
JT<

]
, (24)

and

µ

µ0
= − 1

2(J0 + 1)[f(T+) + f(T−)]

∑
ρJ

F (ρ, J)

×
[
{f(T−)X1(ρ) − T0X2(ρ)}

(
2J + 1
2J0 + 1

)
S+

JT+

+{f(T+)X1(ρ)+T0X2(ρ)}
(

2T0+1
2T−+1

)
S−

JT−

]
, (25)

where

F (ρ, J) = J(J + 1) − J0(J0 + 1) − j(j + 1); (26)

f(T ) = T (T + 1) − T0(T0 + 1) − 3
4
; (27)

X1(ρ) = 1 + (gn + gp − 1)
(−1)l+1/2−j

2l + 1
=

1 + 0.759
(−1)l+1/2−j

2l + 1
; (28)

X2(ρ) = 1 − (gn − gp + 1)
(−1)l+1/2−j

2l + 1
=

1 + 8.411
(−1)l+1/2−j

2l + 1
. (29)

In the last two equations, we have used the values of gp

(= 5.585) and gn(= −3.826) for the spin gyromagnetic
ratios of a proton and a neutron, respectively.

Pick up of a neutron from a target can, in general,
populate states of the residual nucleus having isospin
T< = T0 − 1/2 as well as T> = T0 + 1/2. If sufficient
strengths for both these isospin bands are seen in a pick
up reaction, then eq. (23) can give us the value of µ, the
magnetic moment of the target state. Similarly, in a pro-
ton stripping experiment, in general, both T<- and T>-
states of residual nucleus can be populated and if suffi-
cient strength is observed for both these isospin values,
eq. (24) alone is sufficient to estimate µ.

However, for states with both values of isospin, T< and
T>, if sufficient strength is not seen simultaneously in a

stripping or in a pick up reaction alone, then eq. (25) is
required which gives µ in terms of spectroscopic factors of
states having sufficient strength belonging to a particular
value of T (T< or T>) both for stripping as well as pick up
situations. In this situation there are four possibilities; the
combination of i) T<- states of stripping with T<- states
of pick up, ii) T<- states of stripping with T>- states of
pick up, iii) T>- states of stripping with T<- states of pick
up and iv) T>- states of stripping with T>- states of pick
up. Any one of these combinations may be used in the
case of eq. (25). Thus, if in both stripping and pick up
reactions, adequate data are available for a given target
nucleus and in both cases, T<- states and T>- states are
populated with sufficient strength, then with the help of
eqs. (23), (24) and (25), we can estimate the value of µ in
six different ways.

As can be seen from the eqs. (23), (24) and (25),
the value of µ is sensitive to the distribution of strength
among various states of residual nucleus. The contribution
of states having different J values can have different signs
depending on the factor [J(J +1)−J0(J0 +1)− j(j +1)].
Thus, it is important that apart from accurate strength
measurements, the experimental data should also give ac-
curate assignments of J , for various states, to get mean-
ingful results from the above equations.

3 Calculations and results

We have collected from the literature [15–40], experimen-
tal data for proton stripping and neutron pick up reac-
tions on the targets 17O, 23Na, 25Mg, 27Al, 29Si, 31P, 33S,
35Cl, 37Cl, 39K, 41Ca, 43Ca and 45Sc. We have chosen the
proton stripping and neutron pick up cases because it is
well known that in such reactions, both T<-states and T>-
states of the residual nucleus, can in general be populated.
The selection of target nuclei has also been guided by the
availability of data for both T<-states and T>-states, as
far as possible. Assuming the simplest possible pure shell
model configurations for the target states, we have cal-
culated, using the non-energy-weighted sum rules [1], the
strengths expected for particle transfer taking place to
different shell model orbits. These are compared with the
experimentally observed strengths given in tables 1 and 2.

As mentioned above, in most of the chosen cases, both
T<-states and T>-states of residual nuclei are seen in the
pick up as well as in stripping experiments. With the help
of eqs. (23) and (24) we have calculated the contribution
towards magnetic moment from nucleons populating var-
ious orbits of the target state using data from pick up
and stripping reactions, separately. The results are shown
in table 3 under the headings, Calc. 1 and Calc. 2, re-
spectively. We find that the values obtained from pick up
reaction data (Calc. 1), in almost all cases, are in bet-
ter agreement with the experimentally measured values of
magnetic moments (also given in table 3) than those ob-
tained from stripping reaction data alone (Calc. 2). We,
therefore, tend to believe that the strengths are better
measured in pick up reactions than in the stripping reac-
tions chosen by us. Also, in a particular reaction, the total
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Table 1. Strengths for proton stripping reactions.

Strength
Target Ref. for Assumed Transfer T<-states T>-states
Nucleus expt. configuration orbit observed expected observed expected

data

17O 16 (16O)1d1
5/2 1d5/2 3.21 3.50 2.69 2.50

23Na 18 (16O)1d7
5/2 1d5/2 1.94 2.00 0.67 1.00

2s1/2 0.27 1.00 0.39 1.00

25Mg 20 (16O)1d9
5/2 1d5/2 1.41 1.50 0.43 0.50

2s1/2 0.68 1.00 0.31 1.00

27Al 22 (16O)1d11
5/2 1d5/2 0.51 1.00 — —

29Si 24 (16O)1d12
5/22s

1
1/2 2s1/2 0.85 1.50 0.34 0.50

31P 26 (16O)1d12
5/22s

3
1/2 2s1/2 0.87 1.00 0.30 0.0

33S 28 (16O)1d12
5/22s

4
1/21d

1
3/2 1d3/2 2.11 2.50 1.22 1.50

1f7/2 2.69 4.00 — 4.00

35Cl 30 (16O)1d12
5/22s

4
1/21d

3
3/2 1d3/2 2.07 2.00 0.48 1.00

37Cl 30 (16O)1d12
5/22s

4
1/21d

5
3/2 1d3/2 3.13 3.00 — —

39K 33 (16O)1d12
5/22s

4
1/21d

7
3/2 1d3/2 0.60 1.00 — —

41Ca 35 (40Ca)1f1
7/2 1f7/2 3.13 4.50 2.31 3.50

43Ca 37 (40Ca)1f3
7/2 1f7/2 4.98 6.75 0.11 1.25

45Sc 39 (40Ca)1f5
7/2 1f7/2 4.21 6.00 0.28 1.00

observed strength for the T>-states usually falls shorter of
the theoretically expected value by a larger margin than
that in the case of T<-states. Hence, we tend to come
to the general conclusion that in the available data, the
strengths of T>-states observed in stripping reactions, are
less reliable than the others.

As discussed in the previous section, eq. (25) provides
us with four different ways of combining the pick up and
stripping reaction data. However, in view of the above re-
marks, we have tried only two combinations, namely, T<-
states and T>-states from pick up reactions combined, in
turn, with T<-states from stripping reactions. The results
so obtained are included in table 3 under the headings,
Calc. 3 and Calc. 4, respectively.

Ideally speaking, all the four calculations should yield
identical results, but keeping in view the practical situa-
tion that the DWBA used for extracting strengths from
experimental observations is not an exact theory, we do
expect some variations in the results of our four calcula-
tions. Large variations observed in some cases are, how-
ever, a cause of concern. These discrepancies could result
from any of the following reasons:

i) error in strength measurments
ii) imprecise J/T assignments of nuclear states.

A close look at table 3 shows that the results of our
calculations show good mutual consistency in the case of
17O, 23Na, 25Mg, 31P, 33S and 35Cl nuclei though these do
not always agree with the known values of magnetic mo-
ments of these nuclei because the contribution of nucleons
in all the active orbits may not be known from the avail-
able data. We can, therefore, say that in both the stripping
and pick up reactions reported on these nuclei [16–21,26–
31], the strength measurements for transfer to the main
active orbit in each case, are reasonably accurate.

In the case of 27Al, 41Ca and 45Sc, we find that wher-
ever stripping strengths are involved (Calc. 2, Calc. 3 and
Calc. 4), the results are numerically much smaller than
those of Calc. 1 where only pick up strengths have been
used. The reason for this appears to be the fact that the
total expected value of strength for stripping of a parti-
cle into the relevant orbit is not seen in the experiments
performed on each of these nuclei. This is substantiated
by a perusal of the figures given in table 1 where the total
expected strengths are compared with the experimentally
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Table 2. Strengths for neutron pick up reactions.

Strength
Target Ref. for Assumed Transfer T<-states T>-states
Nucleus expt. configuration orbit observed expected observed expected

data

17O 17 (16O)1d1
5/2 1d5/2 1.00 1.00 0.00 0.00

23Na 19 (16O)1d7
5/2 1p1/2 0.70 1.00 0.74 1.00

1d5/2 1.72 2.50 0.88 1.50

25Mg 21 (16O)1d9
5/2 1d5/2 2.79 3.00 0.94 2.00

27Al 23 (16O)1d11
5/2 1d5/2 2.08 3.50 1.59 2.50

29Si 25 (16O)1d12
5/22s

1
1/2 2s1/2 0.59 1.00 0.08 0.00

31P 27 (16O)1d12
5/22s

3
1/2 1d5/2 2.70 3.00 0.92 3.00

2s1/2 1.06 1.50 0.37 0.50

33S 29 (16O)1d12
5/22s

4
1/21d

1
3/2 1d3/2 1.23 1.00 — —

1f7/2 0.10 0.00 — —

35Cl 31 (16O)1d12
5/22s

4
1/21d

3
3/2 1d3/2 2.59 1.50 0.91 0.50

37Cl 33 (16O)1d12
5/22s

4
1/21d

5
3/2 1d3/2 3.79 3.75 0.14 0.25

39K 34 (16O)1d12
5/22s

4
1/21d

7
3/2 2s1/2 0.30 1.00 0.03 1.00

1d3/2 1.91 2.50 0.70 1.50

41Ca 36 (40Ca)1f1
7/2 1f7/2 0.81 1.00 — —

43Ca 38 (40Ca)1f3
7/2 1f7/2 1.88 3.00 — —

45Sc 40 (40Ca)1f5
7/2 1f7/2 3.95 3.75 0.22 0.25

observed values. For instance, the observed strength for
T<-states in the case of proton stripping into the 1d5/2

orbit of 27Al target, is about 50% of the expected value.
For 29Si and 43Ca targets, in the case of neutron pick

up from 2s1/2 and 1f7/2 orbits, respectively, we find from
table 2 that the measured strengths for T<-states are
about 60% of the expected values in each case, while the
T>-states are thoeretically untenable in both these cases.
This perhaps results in the relatively smaller magnitudes
of the contributions towards their respective magnetic mo-
ments calculated on the basis of pick up strengths alone
(Calc. 1) as compared to the results based wholly or partly
on stripping strengths (Calc. 2, Calc. 3 and Calc. 4 of ta-
ble 3).

In the case of 37Cl and 39K (1d3/2 transfer), we find
from table 3, that the results of various calculations show
rather large deviations from one another. Even the sign of
the magnetic moment contributions obtained from Calc. 4
happens to be opposite to that of the results given by other
calculations. A plausible explanation for this disagreement
is that the observed strengths for T>-states in the case of

pick up reactions on each of these nuclei, happen to be only
about 50% of their expected values. It has been verified by
us that in the event of these strengths being fully observed
(by arbitrarily doubling the observed strengths), the sign
of the results of Calc. 4 would also match with those of
the other results.

The results given above reinforce our earlier remarks
that the values of the magnetic moment contributions ex-
tracted with the help of dipole sum rules are very sensitive
to the discrepancies in strength measurements, and per-
haps also to the assignments of J-values of various states.

4 Concluding remarks

In one of our earlier works [13], we had derived explicit
relationships between magnetic dipole moment of a target
state and the strengths of states of residual nuclei ob-
tained via single-particle stripping as well as pick up re-
actions performed on this target. We have now put these
relationships in a form which appears to be much more
symmetrical and more convenient to handle.
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Table 3. Calculated orbitwise contribution towards magnetic moment.

Target
µexpt

µ0
Calculated contribution towards magnetic moment

nucleus orbit Calc. 1 Calc. 2 Calc. 3 Calc. 4

17O −1.894 1d5/2 −1.78 −1.53 −1.59 −1.64
23Na 2.217 1p1/2 −0.10 — — —

1d5/2 2.30 2.84 2.93 2.77
2s1/2 — −0.40 — —

25Mg −0.855 1d5/2 −0.67 −0.54 −0.33 −0.28
2s1/2 — −0.17 — —

27Al 3.641 1d5/2 3.75 2.33 2.33 2.69

29Si −0.555 2s1/2 −0.71 −1.14 −1.05 −0.92
31P 1.132 1d5/2 −0.52 — — —

2s1/2 2.01 2.24 2.21 2.32

33S 0.643 1d3/2 1.21 1.01 1.24 1.13
1f7/2 — — −0.55 —

35Cl 0.822 1d3/2 0.57 0.34 0.49 0.77

37Cl 0.684 1d3/2 0.46 0.12 0.71 −2.12
39K 0.391 2s1/2 −0.04 — — —

1d3/2 0.43 0.07 0.67 −0.16
41Ca −1.595 1f7/2 −1.55 −0.74 −0.51 −0.94
43Ca −1.317 1f7/2 −1.31 −2.78 −2.86 −3.41
45Sc 4.756 1f7/2 4.61 2.96 3.09 2.56

Calc. 1: Uses eq. (23) with strengths of T<- and T>-states from a pick up reaction.
Calc. 2: Uses eq. (24) with strengths of T<- and T>-states from a stripping reaction.
Calc. 3: Uses eq. (25) with strengths of T<-states obtained from pick up and those of T<-states obtained from a stripping
reaction.
Calc. 4: Uses eq. (25) with strengths of T>-states obtained from pick up and those of T<-states obtained from a stripping
reaction.

We want to emphasize that our aim is not to give a
prescription for the calculation of the magnetic moment
of a nucleus (more accurate methods are available for this
purpose). We are using this physical quantity merely as a
representative to illustrate the effectiveness of dipole sum
rules in pointing out the discrepancies in strength mea-
surements. As mentioned earlier, our eqs. (23), (24) and
(25) provide us with six possible ways to easily calculate
the contribution towards magnetic moment from nucleons
in a particular orbit in the target state (involved in parti-
cle transfer). If the measurement of strengths is accurate
enough, results of all the six different calculations should
show small variations from one another. Relatively large
deviations seen in the results of our different calculations
with respect to one another as well as with respect to the
known value of magnetic moment, point towards the fact
that we are still far away from accurate measurements of
spectroscopic strengths.

We may reiterate that the dipole sum rules, being sen-
sitive to the distribution of strength among various J-
states, provide a more stringent check on the accuracy of
strength measurements as compared to the monopole sum
rules.

We would like to thank the CSIR (India) for providing financial
support to this work.
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